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Overview

Editor’s Note: A hypertext-enhanced version of this article
can be found at http://www.tms.org/pubs/journals/JOM/
9712/Kattner-9712.html.

Author’s Note: In this article, commercial products are iden-
tified as examples. Such identification does not imply recom-
mendation or endorsement by the National Institute of Stan-
dards and Technology, nor does it imply that they are
necessarily the best available for the purpose.

Enormous progress has been made in the
calculation of phase diagrams during the
past 30 years. This progress will continue as
model descriptions are improved and com-
putational technology advances. Improve-
ment has  been made in the model descrip-
tions in the CALPHAD method, the cou-
pling of phase diagrams with kinetic process
modeling, computer programs for easy ac-
cess to phase diagram information, and the
construction of databases used for calculat-
ing the phase diagrams of complex commer-
cial alloys.

INTRODUCTION

Phase diagrams are visual representa-
tions of the state of a material as a func-
tion of temperature, pressure, and con-
centrations of the constituent compo-
nents and are, therefore, frequently
hailed as basic blueprints or roadmaps
for alloy design, development, process-
ing, and understanding. The importance
of phase diagrams is also reflected by the
publication of such handbooks as Binary
Alloy Phase Diagrams,1 Phase Equilibria,
Crystallographic and Thermodynamic Data
of Binary Alloys,2 Phase Equilibrium Dia-
grams,3 which continues in Phase Dia-
grams for Ceramists,4 Handbook of Ternary
Alloy Phase Diagrams,5 and Ternary Al-
loys.6

The state of a two-component mate-
rial at constant pressure can be presented
in the well-known graphical form of bi-
nary phase diagrams. For three-compo-
nent materials, an additional dimension
is necessary for a complete representa-
tion. Therefore, ternary systems are usu-
ally presented by a series of sections or
projections. Due to their multidimen-
sionality, the interpretation of the dia-
grams of more complex systems can be
quite cumbersome for an occasional user
of these diagrams. For systems with more
than three components, the graphical
representation of the phase diagram in a
useful form becomes not only a chal-
lenging task, but is also hindered by the
lack of sufficient experimental informa-
tion. However, the difficulty of graphi-
cally representing systems with many
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components is irrelevant for the calcula-
tion of phase diagrams; such calcula-
tions can be customized for the materials
problem of interest.

While it is only modern developments
in modeling and computational technol-
ogy that have made computer calcula-
tions of multicomponent phase equilib-
ria a realistic possibility, the correlation
between thermodynamics and phase
equilibria was established more than a
century ago by J.W.␣ Gibbs, whose
groundbreaking work has been summa-
rized by Hertz.7 Although the math-
ematical foundation was laid, more than

Figure 1. CALPHAD methodology. The as-
sessed excess Gibbs energies of the con-
stituent subsystems are for extrapolation to a
higher component system.

J.L.␣ Meijering published his calculations
of miscibility gaps in ternary10 and qua-
ternary solutions.11 Shortly afterward,
Meijering applied this method to the
thermodynamic analysis of the Cr-Cu-
Ni system.12 Simultaneously, Kaufman
and Cohen13 applied thermodynamic
calculations in the analysis of the mar-
tensitic transformation in the Fe-Ni sys-
tem; Kaufman continued his work on
the calculation of phase diagrams, in-
cluding pressure dependence. In 1970,
Kaufman and Bernstein14 summarized
the general features of the calculation of
phase diagrams and also gave listings of
computer programs for the calculation
of binary and ternary phase diagrams,
thus laying the foundation for the
CALPHAD method (CALculation of
PHAse Diagrams). In 1973, Kaufman
organized the first project meeting of the
international CALPHAD group. Since
then, the CALPHAD group has grown
consistently larger.

Another important paper on the cal-
culation of phase equilibria was pub-
lished in the 1950s. In his paper, Kikuchi15

described a method to treat order/dis-
order phenomena. This method later
became known as the cluster variation
method (CVM) and is extensively used
in conjunction with first-principles cal-
culations. Although these calculations
are computationally very intensive, enor-
mous progress in algorithms and com-
puter speed has been made in recent
years. The predicted phase diagrams are
generally topologically correct, but
they currently lack sufficient accuracy
for practical applications. De Fontaine16

gives an extensive review of these
calculations.

PHASE DIAGRAM
CALCULATIONS

In order to overcome the problem of
the multidimensionality posed by a sys-
tem with many components, alternate
methods are frequently used to repre-
sent the necessary phase-diagram infor-
mation. With stainless steel alloys, for
example, the complexity is frequently
reduced by expressing the compositions
of the ferrite-stabilizing elements as
chromium␣ equivalents and the austen-
ite-stabilizing elements as nickel equiva-
lents.17 The sums of the chromium and
nickel equivalents are used to predict
the phases expected in the final alloy. It

The calculation
of phase diagrams
reduces the effort
required to
determine
equilibrium
conditions in a
multicomponent
system.

30 years passed before J.J. van Laar8 pub-
lished his mathematical synthesis of
hypothetical binary systems. To describe
the solution phases, van Laar used con-
centration dependent terms that
Hildebrand9 called regular solutions.
More than 40 years had passed when
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Figure 2. Different assessments of the Al-Ni system showing the progress made with the
CALPHAD method: (a) a 1978 assessment by Kaufman and Nesor,47 (b) a 1988 assessment by
Ansara et al.,38 (c) a 1997 assessment by Ansara et al.,39 and (d) the evaluated experimental
diagram.48
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concentration term of   GT
ϕ  is usually ex-

pressed as a power series of T.

  G a b T c T T d Tn
n= + ⋅ ⋅ ⋅ ⋅ + ⋅∑ln( ) (3)

where a, b, c, and dn are coefficients, and
n are integers. To represent the pure
elements, the n are typically 2, 3, –1, and
7 or –9.29 This function is valid for tem-
peratures above the Debye temperature;
in each of the equations in the following
models describing the concentration
dependence, the G coefficients on the
right-hand side can have such a tem-
perature dependence. Frequently, only
the first two terms are used for the repre-
sentation of the excess Gibbs energy.
Dinsdale29 also gives expressions for the
effects of pressure and magnetism on
the Gibbs energy; however, pressure
dependence for condensed systems at
normal pressures is usually ignored.

For multicomponent systems, it has
proven useful to distinguish three con-
tributions from the concentration de-
pendence to the Gibbs energy of a
phase,   Gϕ .

  G G G Gideal xsϕ = + +0 (4)

The first term, G0, corresponds to the
Gibbs energy of a mechanical mixture of
the constituents of the phase; the second
term, Gideal, corresponds to the entropy
of mixing for an ideal solution, and the
third term, Gxs, is the so-called excess
term. Since Hildebrand9 introduced the
term “regular solution” to describe in-
teractions of different elements in a ran-
dom solution, a series of models have
been proposed for phases that deviate
from this regularity (i.e., show a strong

should be noted that approximations
like these are limited to the composition
regime for which they were derived.
Another example is the PHACOMP
method18 used to predict detrimental
topological close packed (TCP) phases
in superalloys. This method is based on
the theory that each element has a spe-
cific electron hole number, and the aver-
age electron hole number is correlated to
the TCP phases in an alloy. Although
this method works very well for nickel-
based superalloys, special corrections are
required with other superalloys, and it
may not be easily applied to other alloy
families. The CALPHAD method, on the
other hand, is based on the minimiza-
tion of the free energy of the system and
is, thus, not only completely general and
extensible, but also theoretically mean-
ingful.

The experimental determination of
phase diagrams is a time-consuming and
costly task. This becomes even more pro-
nounced as the number of components
increases. The calculation of phase dia-
grams reduces the effort required to de-
termine equilibrium conditions in a
multicomponent system. A preliminary
phase diagram can be obtained from
extrapolation of the thermodynamic
functions of constituent subsystems. This
preliminary diagram can be used to iden-
tify composition and temperature re-
gimes where maximum information can
be obtained with minimum experimen-
tal effort. This information can then be
used to refine the original thermody-
namic functions.

Numerical phase diagram informa-
tion is also frequently needed in other
modeling efforts. Even though phase
diagrams represent thermodynamic
equilibrium, it is well established that
the phase equilibria can be applied lo-
cally (local equilibrium) to describe the
interfaces between phases. In such cases,
only the concentrations at this interface
are assumed to obey the requirements of
thermodynamic equilibrium. Thermo-
dynamic modeling of phase diagrams
and kinetic modeling have been success-
fully coupled for a variety of processes,
such as carburizing/nitriding,19,20 diffu-
sion couples,21–23 dissolution of precipi-
tates,24,25 and solidification.26,27 Phase-
equilibrium calculations can not only
give the phases present and their com-
positions, but can also provide numeri-
cal values of enthalpy contents, tem-
perature, and concentration dependence
of phase boundaries for coupling of mi-
croscopic and macroscopic modeling.
Banerjee et al.28 give an example of such
a coupling of phase-equilibria calcula-
tions and solidification micromodels in
a macroscopic heat and fluid-flow analy-
sis of a casting.

In recent years, the expression “com-
putational thermodynamics” is fre-
quently used in place of “calculation of

phase diagrams.” This reflects the fact
that the phase diagram is only a portion
of the information that can be obtained
from these calculations.

THERMODYNAMIC
DESCRIPTIONS AND MODELS

For the calculation of phase equilibria
in a multicomponent system, it is neces-
sary to minimize the total Gibbs energy,
G, of all the phases that take part in this
equilibrium

  
G n G imumi i

i

p

= =
=
∑ ϕ

1

min (1)

where ni is the number of moles, and

  Gi
ϕ  is the Gibbs energy of phase i.
A thermodynamic description of a

system requires the assignment of ther-
modynamic functions for each phase.
The CALPHAD method employs a vari-
ety of models to describe the tempera-
ture, pressure, and concentration depen-
dencies of the free-energy functions of
the various phases. The contributions to
the Gibbs energy of a phase ϕ can be
written as

   G G T xT
ϕ ϕ= ( ) +,

   , , , , ,  G p T x G T T xp m C
ϕ ϕ β( ) + ( )0 (2)

where   G T xT
ϕ ,( )  is the contribution to the

Gibbs energy by the temperature (T) and
the composition (x),  G p T xp

ϕ , ,( )  is the
contribution of the pressure (p), and

  G T T xm C
ϕ β, , ,0( )  is the magnetic contri-

bution of the Curie or Néel temperature
(TC) and the average magnetic moment
per atom (β0).

The temperature dependence of the
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Figure 3. A tin-rich corner of the Sn-Bi-Ag
system with isotherms showing (a) the liquidus
surface (dashed lines are the boundaries of
the three-phase equilibria at the eutectic tem-
perature) and (b) the solidus surface.

a

b

Figure 4. Temperature vs. calculated fraction
solid curves for six Sn-3.5Ag-xBi (in weight
percent) alloys using (a) Lever rule calcula-
tions and (b) Scheil calculations.

b

a

compositional variation in their thermo-
dynamic properties) to describe the ex-
cess Gibbs energy. For example, an ionic
liquid model30 or associate model,31

among others, have been proposed for
liquid phases. For ordered solid phases,
Wagner and Schottky32 introduced the
concept of defects on the crystal lattice in
order to describe deviations from sto-
ichiometry.

A description of order/disorder trans-
formations was proposed by Bragg and
Williams.33 Since then, many other mod-
els have been proposed. Today, the most
commonly used models (listed in order
of increasing complexity) are those for
stoichiometric phases, regular solution-
type models for disordered phases, and
sublattice models for ordered phases
having a range of solubility or exhibiting
an order/disorder transformation. The
following examples give descriptions of
models for binary phases and can easily
be expanded for ternary and higher or-
der phases.

The Gibbs energy of a binary stoichio-
metric phase is given by

  G x G x G GA A B B
fϕ = + +0 0 0 0 ∆ (5)

where   xA
0  and   xB

0  are mole fractions of
elements A and B and are given by the
stoichiometry of the compound,   GA

0  and

  GB
0  are the respective reference states of

elements A and B, and ∆Gf is the Gibbs
energy of formation. The first two terms
correspond to G0, and the third term
corresponds to Gxs in Equation 4. Gideal of
Equation 4 is zero for a stoichiometric
phase, since there is no random mixing.

Binary solution phases, such as liquid
and disordered solid solutions, are
described as random mixtures of the
elements by a regular-solution type
model

  G x G x GA A B B
ϕ = + +0 0

  RT x x x xA A B B ln ln+{ }+

  
x x G x xA B i A B

i

i

n

−( )
=
∑

0

(6)

where xA and xB are the mole fractions,
and   GA

0  and   GB
0   are the reference states

of elements A and B, respectively. The
first two terms correspond to G0 and the
third term, from random mixing, to Gideal

in Equation 4. The Gi of the fourth term
are coefficients of the excess Gibbs en-
ergy term, Gxs, in Equation 4. The sum of
the terms (xA – xB)

i is the so-called Redlich-
Kister polynomial,34 which is the most
commonly used polynomial in regular-
solution type descriptions. Although
other polynomials have been used in the
past, in most cases they can be converted
to Redlich-Kister polynomials.35

The most complex and general model
is the sublattice model frequently used
to describe ordered binary solution
phases. The basic premise for this model
is that a sublattice is assigned for each
distinct site in the crystal structure. For
example, the CsCl (B2) structure con-
sists of two sublattices, one of which is
occupied predominantly by Cs atoms
and the other by Cl atoms. An ordered
binary solution phase with two
sublattices that exhibits substitutional
deviation from stoichiometry can be
described by the expression

  G x G x G RTA A B B
ϕ = + +0 0  

{  a y y y yA A B B
1 1 1 1 1ln ln+( ) +

  a y y y yA A B B
2 2 2 2 2ln ln+( ) }+

  y y G y y G y y GA A AA A B AB B A BA
1 2 0 1 2 0 1 2 0+ + +

  y y GB B BB
1 2 0

  
+ −( ) +

=
∑ y y y G y yA B A i

A
A B

i

i

n A

1 1 2 2 1 2

0

2
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B
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i

i

n B
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0

2
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A
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0

1
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=
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i

i

n B
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1

1
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=
∑

  y y y y GA B A B
hp1 1 2 2 (7)

where   y y yA B A
1 1 2, , , and   yB

2  are the
species concentrations of element A
and B on sublattices 1 and 2
with   a y a y x a y a y xA A A B B B

1 1 2 2 1 1 2 2+ = + =, ,

  y yA B
1 1 1+ =  and   y yA B

2 2 1+ = . a1 and a2 are
the site fractions of the sublattices 1 and
2 and are given by the number of sites in
the unit cell. The first two terms corre-
spond to G0, and the third term corre-
sponds to Gideal in Equation 4. The re-
maining terms are the excess Gibbs en-
ergy term, Gxs, in Equation 4. The coeffi-
cients   G G GAA AB BA

0 0 0, , ,  and   GBB
0  can be

visualized as the Gibbs energies of the
end-member phases. The end-member
phases are formed when each sublattice

is occupied only by one kind of species
and can be either real (  A Ba a

1 2 : A atoms on
sublattice 1 and B atoms on sublattice 2)
or hypothetical (  A A B Aa a a a

1 2 1 2, , and   B Ba a
1 2 ).

The remaining terms of Gxs describe in-
teractions between the atoms on one
sublattice similar to regular-solution type
models for disordered solution phases.
This model description was first intro-
duced by Sundman and Ågren36 and
later refined by Andersson et al.37

For the treatment of order/disorder
transformations with this model, the
coefficients in Gxs are not independent of
each other. For example, Ansara et al.38

derived dependencies for the order/dis-
order transformation of fcc/L12. This
model was later modified by Ansara et
al.39 to allow independent evaluation of
the thermodynamic properties of the
disordered phase. Chen et al.40 have pro-
posed another model for the treatment
of ordered phases.

It should be noted that Equations 5
and 6 are, in fact, special cases of Equa-
tion 7. Equation 7 reduces to Equation 6
if only one sublattice is considered or to
Equation 5 if only one species is consid-
ered on each of the two sublattices. The
generality of the sublattice description
allows the formulation of a general de-
scription for multicomponent phases that
can easily be computerized. Lukas et
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Figure 5. Phase fraction vs. temperature
curves for solidification of alloy Al-4.44Cu-
1.56Mg-0.55Mn-0.23Fe-0.21Si-0.05Zn (in
weight percent) using (a) Lever rule calcula-
tion and (b) Scheil calculation.

b

a

Figure 6. Fraction solid vs. local temperature
curves for the two nodes from the casting
simulation compared to the curves obtained
from Scheil and Lever rule solidification cal-
culations.

mental data for each system. In order to
obtain an optimized set of coefficients, it
is desirable to take into account all types
of experimental data (e.g., phase dia-
gram, chemical potential, and enthalpy
data). The coefficients can be determined
from the experimental data by a trial-
and-error method or mathematical meth-
ods. The trial-and-error method is only
feasible if few different data types are
available. This method becomes increas-
ingly cumbersome as the number of com-
ponents and/or the number of data types
increases. In this case, mathematical
methods, such as the least squares
method of Gauss,42 the Marquardt
method,43 or Bayesian estimation
method,44 are more efficient. The deter-
mination of the coefficients is frequently
called assessment or optimization of a
system.

HIGHER COMPONENT
SYSTEMS

A higher component system can be
calculated from thermodynamic extrapo-
lation of the thermodynamic excess
quantities of the constituent subsystems.
Several methods exist to determine the
weighting terms used in such an ex-
trapolation formula. Hillert45 analyzed
various extrapolation methods and rec-
ommended the use of Muggianu’s
method46 since it can easily be general-
ized. The Gibbs energy of a ternary-
solution phase determined by extrapo-
lation of the binary energies using
Muggianu’s method is given by

  G x G x G x GA A B B C C
ϕ = + + +0 0 0

  RT x x x x x xA A B B C Cln ln ln+ +{ }+

  
x x G x xA B i

AB
A B

i

i

nAB

( – ) +
=
∑

0

  
x x G x xA C i

AC
A C

i

i

nAC

( – ) +
=
∑

0

  
x x G x xB C i

BC
B C

i

i

nBC

( – )
=
∑

0

(10)

where the parameters Gi
jk have the same

values as in Equation 6 for each of the
binary systems. If necessary, a ternary
term xA xB xC GABC(T,x) can be added in
order to describe the contribution of three
element interactions to the Gibbs en-
ergy.

The usual strategy for assessment of a
multicomponent system is shown in Fig-
ure 1. First, the thermodynamic descrip-
tions of the constituent binary systems
are derived. Thermodynamic extrapola-
tion methods are then used to extend the
thermodynamic functions of the bina-
ries into ternary and higher order sys-
tems. The results of such extrapolations
can then be used to design critical ex-
periments. The results of the experiments
are compared to the extrapolation, and if
necessary, interaction functions are

added to the thermodynamic descrip-
tion of the higher order system. As men-
tioned previously, the coefficients of the
interaction functions are optimized on
the basis of these data. In principle, this
strategy is followed until all 2, 3, . . . n
constituent systems of an n-component
system have been assessed. However,
experience has shown that, in most cases,
no corrections or very minor corrections
are necessary for reasonable prediction
of quaternary or higher component sys-
tems. Since true quaternary phases are
rare in metallic systems, assessment of
most of the ternary constituent systems
is often sufficient to describe an n-com-
ponent system.

IMPROVED CAPABILITIES

One goal of the CALPHAD group is to
generate descriptions of binary, ternary,
and quaternary systems that can be used
for the construction of thermodynamic
databases. Thermodynamic databases of
multicomponent systems require con-
sistency in the model descriptions and
the parameters used. With the constant
improvement of computational technol-
ogy, the use of more realistic models,
such as the sublattice model description,
becomes feasible. This allows more ac-
curate descriptions of complex systems
and makes it desirable to reassess sys-
tems that have been previously assessed.

The progress that has been made with
these reassessments is shown in Figure 2
for the Al-Ni system, a basic system for
superalloys. In the first assessment of
Kaufman and Nesor,47 the phases were
either described as disordered solution
phases [liquid, (Al), (Ni), and AlNi]
or as stoichiometric compounds (Al3Ni,
Al3Ni2, and AlNi3). The (Al) and (Ni)
phases were described as one phase since
they both have the fcc structure. Al-
though the general topology of the ex-
perimentally determined phase dia-
gram48 is reproduced, major differences
occur for the equilibria involving the
Al3Ni2 and AlNi phases. These differ-

al.35 give an example of a description.
From the condition that the Gibbs en-

ergy at thermodynamic equilibrium re-
veals a minimum for given temperature,
pressure, and composition, J.W. Gibbs
derived the well-known equilibrium
conditions that the chemical potential,

  µn
ϕ , of each component, n, is the same in

all phases, ϕ

  ′µ = ′′µ = ⋅⋅⋅µ1 2 1
ϕ

  ′µ = ′′µ = ⋅⋅⋅µ2 2 2
ϕ

 ·············

  ′µ = ′′µ = ⋅⋅⋅µn n n
ϕ (8)

The chemical potentials are related to
the Gibbs energy by the well known
equation

  
G xi i

i

n

= µ
=
∑

1

(9)

Equation 8 results in n nonlinear equa-
tions that can be used in numerical cal-
culations. All of the CALPHAD-type
software tools use methods like the two-
step method of Hillert41 or the one-step
method of Lukas et al.35 to minimize the
Gibbs energy. The equations obtained
from these methods are usually nonlin-
ear and are solved numerically using a
Newton-Raphson technique.

DETERMINATION OF THE
COEFFICIENTS

The coefficients of the Gibbs energy
functions are determined from experi-
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ences are at least partially a result of
ignoring the homogeneity range of the
Al3Ni2 phase and not considering the
fact that AlNi is an ordered phase with
CsCl structure.

In the second assessment by Ansara
et al.,38 the sublattice-model description
was introduced for the ordered phases
with noticeable homogeneity ranges
(Al3Ni2, AlNi, and AlNi3). The disor-
dered fcc phase [(Al) and (Ni)] and the
ordered L12 phase (AlNi3) were de-
scribed with a single free-energy func-
tion as one phase that undergoes an
order/disorder transformation. While
the phase diagram calculated from these
improved analytical descriptions shows
better agreement with the observed dia-
gram, some noticeable disagreement still
remains. The range of the (Al) solid so-
lution is overestimated, and the region
of single-phase AlNi3 slants to the nickel-
rich side at lower temperatures. Both
problems likely result from describing
all of these phases with the single
function. It should be also noted that the
region of single-phase Al3Ni2 is overesti-
mated at higher temperatures and un-
derestimated at lower temperatures. This
may be caused by the substitutional
sublattice model description used in this
assessment. It has been experimentally
observed that on the nickel-rich side of
the nominal stoichiometry, nickel atoms
fill structural vacancies; on the alumi-
num-rich side, nickel atoms are substi-
tuted by aluminum.

This has been considered in the most
recent assessment by Ansara et al.,39 who
also modified the model for the descrip-
tion of the order/disorder transforma-
tion mentioned above. This assessment
also includes a description of the Al3Ni5
phase as a stoichiometric compound,
though its homogeneity range has been
ignored. The phase diagram obtained
from this assessment is in very good
agreement with the observed diagram.
It should be noted that the calculated
phase diagram not only reproduces the
experimentally observed phase diagram,
but also provides the thermodynamic
functions for extrapolation into higher
order systems or use in the modeling of,
for example, casting solidification.

A disadvantage of this iterative pro-
cess with improved descriptions is that
the descriptions used in previous as-
sessments may be incompatible with
newer assessments that are based on
recently developed model descriptions.
Despite this, significant progress has
been made in recent years, and an in-
creasing number of databases have be-
come available for use with multicom-
ponent systems.

COMPUTER SOFTWARE TOOLS
AND DATABASES

A variety of software packages can be
used for the calculation of phase dia-

grams, making it impossible to list all of
them here. Frequently used software
packages are ChemSage,49 the so-called
Lukas programs,35,42 MTDATA,50 and
Thermo-Calc.51 Although all of these soft-
ware packages can be used for the calcu-
lation of phase equilibria, their features
and user interfaces differ. Most of the
model descriptions used for alloy and
ceramic systems are common to all these
programs; however, not every package
has other specific model descriptions
(e.g., models for aqueous or polymer
solutions). Another important feature of
these software packages is the availabil-
ity of a module for the optimization of
the Gibbs energy functions. Such opti-
mizing modules are available with
ChemSage,52 the Lukas programs,42 and
Thermo-Calc.53

The development of increasingly user-
friendly computer interfaces, very often
in conjunction with programs for special
tasks, such as the ETTAN Windows inter-
face54 for Thermo-Calc or the Scheil and
Lever programs,55 makes phase-diagram
information more accessible for the non-
expert user. For these applications, the
user needs only to supply a bulk compo-
sition and temperature limits for the cal-
culation, and the programs generate the
remaining conditions that are needed
for the calculation.

For the incorporation of phase-equi-
libria calculations into micromodeling
(e.g., the modeling of diffusion pro-
cesses), an interface must be created in
which the important variables are trans-
ferred from one computer code segment
to another. For the simulation of diffu-
sional reactions, Thermo-Calc51 has been
interfaced with the package DICTRA.56

A general interface (TQ interface) is avail-
able for Thermo-Calc and ChemSage.57

Banerjee et al.28 used another, fairly
simple interface for solidification mi-
cromodeling.

Several thermodynamic databases
have been constructed from the assess-
ments of binary, ternary, and quater-
nary systems. For the description of com-
mercial alloys, it is quite likely that at
least a dozen elements need to be con-
sidered. The number of constituent sub-
systems of an n-component system is
determined by the binomial coefficient
(  k

n), where k is the number of compo-
nents in the subsystem. A 12 compo-
nent system consists accordingly of 66
binary, 220 ternary, and 495 quaternary
subsystems. These numbers suggest that
is impossible to obtain descriptions of all
the subsystems in reasonable time. How-
ever, as mentioned previously, only
rarely are quaternary excess parameters
needed. If the database is for base ele-
ment X, it is sufficient to consider only
the X-based ternary systems, hence, con-
siderably reducing the number of needed
assessments. Also, if more than one ele-
ment occurs only in fairly small quanti-

ties in the alloy family of interest then
assessments for binary systems contain-
ing only these elements or ternary sys-
tems with two or three of these elements
are generally not very important for ob-
taining correct predictions.

Based on this information, databases
have been developed for various com-
mercial-alloy systems.58,59 However, be-
cause the software packages assume dif-
ferent computer file formats for the da-
tabases, care must be taken in order to
insure compatibility between database
and program package.

A review of fully integrated thermo-
chemical database systems that were
available in 1990 is provided by Bale and
Eriksson.60 Since then, their review has
been complemented by a site on the
World Wide Web.61

APPLICATIONS

In recent years, the application of
phase-diagram information obtained
from calculations to practical processes
has increased significantly. Extensive
collections of examples can be found in
publications such as User Applications of
Alloy Phase Diagrams,62 User Aspects of
Phase Diagrams,63 and The SGTE Case-
book, Thermodynamics at Work.64 In the
following, a few examples will be given
for solidification processes.

As mentioned, extrapolation to higher
component systems is one of the staples
of CALPHAD, since it provides infor-
mation where otherwise only educated
guesses could be used. When alloys of
the Sn-Ag-Bi system were considered as
candidate alloys for lead-free solders, no
phase-diagram information for the liq-
uid phase could be found. Kattner and
Boettinger65 extrapolated the descrip-
tions of the binary systems to calculate
the solidus and liquidus surfaces of the
tin-rich corner (Figure 3). The silver-rich
side of the eutectic troughs should be
avoided because the liquidus tempera-
ture increases significantly with increas-
ing silver concentration. Figure␣ 3 can be
used to identify composition regimes
where the freezing range is suitable for
solder applications.

Two simple models describe the limit-
ing cases of solidification behavior. First,
complete diffusion is assumed in the
solid as well as in the liquid for solidifi-
cation obeying the Lever rule at each
temperature during cooling. Thus, all
phases are assumed to be in thermody-
namic equilibrium at all temperatures
during solidification. In comparison, so-
lidification following the Scheil path,
where diffusion in the solid is forbidden
and thermodynamic equilibrium exists
only as local equilibrium at the liquid/
solid interface, produces worst-case
microsegregation with the lowest final
freezing temperature. Modeling of real
solidification behavior requires a kinetic
analysis of microsegregation and back
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diffusion; however, for most alloys, the
predictions of the Scheil model are close
to reality.

Scheil and Lever rule calculations were
carried out for six alloy compositions in
the solder alloy Ag-Bi-Sn system. The
results are shown in Figure 4. The forma-
tion of eutectic due to segregation in the
Scheil solidification increases the freez-
ing range drastically. A comparison of
Figure 4a and Figure 4b shows that as
the equilibrium freezing range is in-
creased (by adding bismuth), the Scheil
solidification curve begins to deviate
from that of the Lever rule solidification
at smaller values of solid fraction formed.
This is an indication that nonequilibrium
solidification has a smaller impact on
the actual freezing range of an alloy with
a small equilibrium freezing range than
an alloy with a large equilibrium freez-
ing range. Because it is a practical re-
quirement that solders should have a
limited freezing range, this is important
information for use in the design of new
solder alloys.

A phase-fraction diagram vs. tempera-
ture diagram is a very useful form of
graphically presenting multicomponent
alloys. Such diagrams are shown in Fig-
ure 5 for Lever rule and Scheil calcula-
tions of an alloy that is close in composi-
tion to the commercial aluminum alloy
243. The composition (in weight per-
cent) used for this calculation is Al-
4.44Cu-1.56Mg-0.55Mn-0.23Fe-0.21Si-
0.05Zn. For the calculations, the Al-
DATA database59,66 was used. The differ-
ence between Lever rule and Scheil so-
lidification becomes most noticeable to-
ward the end of solidification. For both
solidification paths, the solidification
begins with the precipitation of alumi-
num and Al6Mn. The Lever solidifica-
tion, shown in Figure 5a, continues with
the formation of the α-phase, Al20Cu2Mn3,
Al7Cu2Fe, the decomposition of Al6Mn
and the α-phase, and the formation of
Mg2Si. Finally, after solidification is
complete, precipitation of Al2CuMg be-
gins. The final microstructure consists
mainly of aluminum and small amounts
of Al20Cu2Mn3, Al7Cu2Fe, Mg2Si, and
Al2CuMg.

The Scheil solidification, shown in Fig-
ure 5b, continues with the formation of
Al7Cu2Fe, Mg2Si, Al20Cu2Mn3 (this phase
is not shown in the figure since the
amount is extremely small), Al2CuMg,
and Al2Cu. The microstructures obtained
from these paths are quite different,
which might result in different mechani-
cal properties. The actual microstruc-
ture can be compared to diagrams like
those shown in Figure␣ 5, and casting
parameters can be adjusted to obtain the
desired microstructure by following a
solidification path somewhere between
these extremes.

Major progress in the application of
phase-diagram information has been

made in the implementation of such cal-
culations in casting simulation software.
Thermodynamic calculation of the phase
equilibria of a multicomponent alloy was
interfaced with a micromodel for com-
puting the change of fraction solid and
temperature, given a specified change in
enthalpy during the liquid-solid trans-
formation. This coupling was incorpo-
rated into a finite-element package de-
veloped for modeling the solidification
of castings. The simulation was carried
out for a step wedge part and a Ni-15Al-
2Ta (in weight percent) alloy. Further
details of the simulation are described
by Banerjee et al.28 Two nodes (points on
the finite-element mesh) were selected
to demonstrate the effect of the different
cooling histories. One node (node 63)
cooled approximately twice as fast as
the other one (node 1). The fraction solid
vs. local temperature curves were calcu-
lated for these two nodes during runtime
and are compared to those of the limit-
ing Scheil and Lever rule curves in Fig-
ure 6, with the curve of the slower cool-
ing node revealing a slightly less pro-
nounced Scheil behavior, and thus less
segregation than the faster cooling node.
These differences in Scheil behavior and
segregation are expected to appear in
the final casting and to be reflected in
changing microstructure and properties
varying throughout the casting.
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